Problems and Solutions: INMO-2012

1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB =

V2412 and AB subtends 135° at the centre of the circle. Find the
maximum possible area of ABCD.

Solution: Let O be the centre of the circle in which ABCD is inscribed
and let R be its radius. Using cosine rule in triangle AOB, we have

2+v2=2R*(1 — cos 135°) = R%(2+ V2).

Hence R = 1.

Consider quadrilateral ABCD as in the second figure above. Join AC.
For [ADC] to be maximum, it is clear that D should be the mid-point
of the arc AC so that its distance from the segment AC is maximum.
Hence AD = DC for [ABCD] to be maximum. Similarly, we conclude
that BC = CD. Thus BC = CD = DA which fixes the quadrilateral
ABCD. Therefore each of the sides BC, CD, DA subtends equal angles
at the centre O.

Let /BOC = «, ZCOD = $ and ZDOA = ~. Observe that

[ABCD] = [AOB]+[BOC|+[COD]+[DOA] = %sin 135°+%(sin a+sin f+sin7y).

Now [ABCD| has maximum area if and only if « = § = v = (360° —
135°)/3 = 75°. Thus

1 3 1/( 1 3+1 54+ 3v3
[ABCD]| = =sin135° + =sin75° = = ——1—3\/7—’_ _ot \/7
2 2 2\ V2 2v/2 4/2

Alternatively, we can use Jensen’s inequality. Observe that «, 3, v are
all less than 180°. Since sinx is concave on (0,7), Jensen’s inequality
gives

sino + Slgﬁ + sy < sin (LW) = sin 75°.

Hence

ABCD] < - 4 Bgnse = 2E3V3
2v/2 2 44/2

with equality if and only if « = § = v = 75°.



2. Letp; <ps <p3 <psand ¢ < ¢2 < g3 < q4 be two sets of prime numbers
such that p, — p; = 8 and ¢4 — ¢ = 8. Suppose p; > 5 and ¢; > 5. Prove
that 30 divides p; — ¢.

Solution: Since p, — p; = 8, and no prime is even, we observe that
{p1,p2, 3,4} is a subset of {p1,p1 +2,p1 +4,p1 + 6, p1 + 8}. Moreover p; is
larger than 3. If p; =1 (mod 3), then p, + 2 and p, + 8 are divisible by 3.
Hence we do not get 4 primes in the set {py,p; + 2,p1 +4,p1 + 6,p1 + 8}.
Thus p; = 2 (mod 3) and p; + 4 is not a prime. We get p, = p; + 2,p3 =
p1+6,ps=p1 +8.

Consider the remainders of p,, p; + 2,p; + 6,p; + 8 when divided by 5. If
p1 =2 (mod 5), then p; + 8 is divisible by 5 and hence is not a prime. If
p1 =3 (mod 5), then p; + 2 is divisible by 5. If p; =4 (mod 5), then p; + 6
is divisible by 5. Hence the only possibility is p; = 1 (mod 5).

Thus we see that p; = 1 (mod 2), p; =2 (mod 3) and p; =1 (mod 5). We
conclude that p; = 11 (mod 30).

Similarly ¢; = 11 (mod 30). It follows that 30 divides p; — ¢;.
3. Define a sequence (fy(x), fi(x), fa(z),...) of functions by
fol@) =1, fi@) =2, (fol@)” =1 = fupa (@) famr(a), forn>1.

Prove that each f,(z) is a polynomial with integer coefficients.
Solution: Observe that

Fa(@) = fam1(@) fara(z) =1 = fo_1(2) = faa(z) fu(2).
This gives

In@) (fa@) + Jaa(@)) = Fara (far(@) + frn ().

We write this as

fn—l(x) + fn—i-l(x) _ fn—2(x) + fn(x)
fn() fn1(x) ‘

Using induction, we get

fas(@) + far(@) _ fola) + o)

Observe that 2(2) — 1
\r)y—1 22—
folz) = W - 1
Hence
forr (@) + fani(@) _ 14+ @2 —1)

Thus we obtain

fn-i—l(x) = ZEfn(ZE) - fn—l(x)'



Since fy(z), fi(x) and f;(z) are polynomials with integer coefficients,
induction again shows that f,(z) is a polynomial with integer coeffi-
cients.

Note: We can get f,(x) explicitly:

Jo(z) = 2" — <n;1)xn_2+ <n;2)xn_4— <n;3)x”_6+-~-

. Let ABC be a triangle. An interior point P of ABC is said to be good if
we can find exactly 27 rays emanating from P intersecting the sides of
the triangle ABC such that the triangle is divided by these rays into 27
smaller triangles of equal area. Determine the number of good points
for a given triangle ABC.

Solution: Let P be a good point. Let [, m,n be respetively the number
of parts the sides BC, C'A, AB are divided by the rays starting from
P. Note that a ray must pass through each of the vertices the triangle
ABC; otherwise we get some quadrilaterals.

Let h; be the distance of P from BC. Then h,; is the height for all the
triangles with their bases on BC. Equality of areas implies that all
these bases have equal length. If we denote this by z, we get [z = a.
Similarly, taking y and z as the lengths of the bases of triangles on C'A
and AB respectively, we get my = b and nz = c¢. Let hy, and hs be the
distances of P from C'A and AB respectively. Then

2A
hix = hoy = hzz = 57
where A denotes the area of the triangle ABC. These lead to
I 2A 1 _2Am _2An
P ora Y 2m ) YT 2T e
But 2A 2A 2A
= hm - = hba - = h’c
a b c
Thus we get

E_ l hg m h3 n

However, we also have
hi _[PBC]  hy [PCA] hy [PAB]
ha A7 h AT R A
Adding these three relations,

Thus

wtwr T T T T



We conclude that [ + m + n = 27. Thus every good point P determines
a partition (I,m,n) of 27 such that there are [, m, n equal segments
respectively on BC, C'A, AB.

Conversely, take any partition (I,m,n) of 27. Divide BC, CA, AB re-
spectively in to [, m, n equal parts. Define

2IA 2mA

=or =
Draw a line parallel to BC at a distance h; from BC'; draw another line
parallel to C'A at a distance h, from C'A. Both lines are drawn such

that they intersect at a point P inside the triangle ABC'. Then

1 IA mA
Hence A
n
PAB] = —.
[ ] o
This shows that the distance of P from AB is
2nA
hy = .
7 97c

Therefore each traingle with base on C'A has area % We conclude that

all the triangles which partitions ABC have equal areas. Hence P is a
good point.

Thus the number of good points is equal to the number of positive
integral solutions of the equation [ + m + n = 27. This is equal to

26
= 325.
() =2

. Let ABC be an acute-angled triangle, and let D, F, F be points on BC,
CA, AB respectively such that AD is the median, BE is the internal
angle bisector and C'F' is the altitude. Suppose LFDE = /C, Z/DEF =
/A and ZEFD = /B. Prove that ABC is equilateral.

Solution: Since ABFC is
right-angled at F, we have
FD = BD = CD = a/2. Hence
ZBFD = /B. Since ZEFD =
/B, we have ZAFE =7 —2/B.
Since /DEF = /A, we also get
ZCED = rm—-2/B. Applying sine
rule in ADEF, we have

DF FE DE
sinA sinC sinB’




Thus we get F'/E = ¢/2 and DE = b/2. Sine rule in ACED gives

DE (D
sinC sin(r — 2B)’

Thus (b/sinC') = (a/2sin B cos B). Solving for cos B, we have

cos B — asinc _ac
- 2bsin B 202’

Similarly, sine rule in AAEF gives

EF  AE
sinA  sin(m — 2B)’

This gives (since AE = bc/(a + ¢)), as earlier,

a
a+c

cos B =

Comparing the two values of cos B, we get 2b*> = c(a + ¢). We also have

2a2¢c

a+c

+a®—b* =2cacos B =
Thus
4a*c = (a + c)(2¢® +2a* — 2b%) = (a + ¢)(2¢ + 2a® — c(a + ¢)).

This reduces to 2a® — 3a*c+¢* = 0. Thus (a — ¢)*(2a+ ¢) = 0. We conclude
that a = c. Finally
20 = c(a + c) = 2¢%

We thus get b = ¢ and hence a = ¢ = b. This shows that AABC is
equilateral.

. Let f : Z — Z be a function satisfying f(0) # 0, f(1) = 0 and
W fzy) + f(@)f(y) = flx) + f(y):
@ (f(z—y) — f(0))f(x)f(y) =0,

for all z,y € Z, simultaneously.

(@) Find the set of all possible values of the function f.

(b) If f(10) # 0 and f(2) = 0, find the set of all integers n such that
f(n) #0.

Solution: Setting y = 0 in the condition (ii), we get

(f(x) = f(0)) f(z) =0,

for all x (since f(0) # 0). Thus either f(z) =0 or f(x) = f(0), for all z € Z.
Now taking » = y = 0 in (i), we see that f(0) + f(0)?> = 2f(0). This shows



that f(0) = 0 or f(0) = 1. Since f(0) # 0, we must have f(0) = 1. We
conclude that

either f(z) =0 or f(z) = 1 for each z € Z.

This shows that the set of all possible value of f(z) is {0,1}. This
completes (a).

Let S = {n € Z|f(n) # 0}. Hence we must have S = {n € Z|f(n) = 1} by
(a). Since f(1) =0, 1 isnotin S. And f(0) = 1 implies that 0 € S. Take
any z € Z and y € S. Using (ii), we get

flxy) + f(x) = f() + 1.

This shows that zy € S. If x € Z and y € Z are such that zy € S, then
(ii) gives

L+ f(2)f(y) = fz) + f(y).
Thus (f(z) — 1)(f(y) — 1) = 0. It follows that f(z) = 1 or f(y) = 1; i.e.,
either x € S or y € S. We also observe from (ii) that z € S and y € S
implies that f(x —y) = 1 so that x — y € S. Thus S has the properties:

(A) z € Z and y € S implies zy € S;

(B) z,y € Z and zy € S implies z € S or y € S;

(C) z,y € S implies x —y € S.

Now we know that f(10) # 0 and f(2) = 0. Hence f(10) =1 and 10 € S;

and 2 ¢ S. Writing 10 = 2 x 5 and using (B), we conclude that 5 € S and
f(5) = 1. Hence f(5k) =1 for all k € Z by (A).

Suppose f(5k +1) = 1 for some [, 1 <[ < 4. Then 5k +1 € S. Choose
u € Z such that lu =1 (mod 5). We have (5k + [)u € S by (A). Moreover,
lu =1+ 5m for some m € Z and

(5k + Du = bku + lu = 5ku+5m + 1 = 5(ku +m) + 1.

This shows that 5(ku+m)+1 € S. However, we know that 5(ku+m) € S.
By (C), 1 € S which is a contradiction. We conclude that 5k + 1 ¢ S for
any [, 1 <[ < 4. Thus

S = {bk|k € Z}.
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