
Problems and Solutions: INMO-2012

1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB =
√

2 +
√
2 and AB subtends 135◦ at the centre of the circle. Find the

maximum possible area of ABCD.

Solution: Let O be the centre of the circle in which ABCD is inscribed
and let R be its radius. Using cosine rule in triangle AOB, we have

2 +
√
2 = 2R2(1− cos 135◦) = R2(2 +

√
2).

Hence R = 1.

Consider quadrilateral ABCD as in the second figure above. Join AC.
For [ADC] to be maximum, it is clear that D should be the mid-point
of the arc AC so that its distance from the segment AC is maximum.
Hence AD = DC for [ABCD] to be maximum. Similarly, we conclude
that BC = CD. Thus BC = CD = DA which fixes the quadrilateral
ABCD. Therefore each of the sides BC, CD, DA subtends equal angles
at the centre O.

Let ∠BOC = α, ∠COD = β and ∠DOA = γ. Observe that

[ABCD] = [AOB]+[BOC]+[COD]+[DOA] =
1

2
sin 135◦+

1

2
(sinα+sin β+sin γ).

Now [ABCD] has maximum area if and only if α = β = γ = (360◦ −
135◦)/3 = 75◦. Thus

[ABCD] =
1

2
sin 135◦ +

3

2
sin 75◦ =

1

2

(

1√
2
+ 3

√
3 + 1

2
√
2

)

=
5 + 3

√
3

4
√
2

.

Alternatively, we can use Jensen’s inequality. Observe that α, β, γ are
all less than 180◦. Since sin x is concave on (0, π), Jensen’s inequality
gives

sinα + sin β + sin γ

3
≤ sin

(

α + β + γ

3

)

= sin 75◦.

Hence

[ABCD] ≤ 1

2
√
2
+

3

2
sin 75◦ =

5 + 3
√
3

4
√
2

,

with equality if and only if α = β = γ = 75◦.



2. Let p1 < p2 < p3 < p4 and q1 < q2 < q3 < q4 be two sets of prime numbers
such that p4 − p1 = 8 and q4 − q1 = 8. Suppose p1 > 5 and q1 > 5. Prove
that 30 divides p1 − q1.

Solution: Since p4 − p1 = 8, and no prime is even, we observe that
{p1, p2, p3, p4} is a subset of {p1, p1 + 2, p1 + 4, p1 + 6, p1 + 8}. Moreover p1 is
larger than 3. If p1 ≡ 1 (mod 3), then p1 + 2 and p1 + 8 are divisible by 3.
Hence we do not get 4 primes in the set {p1, p1 + 2, p1 + 4, p1 + 6, p1 + 8}.
Thus p1 ≡ 2 (mod 3) and p1 + 4 is not a prime. We get p2 = p1 + 2, p3 =
p1 + 6, p4 = p1 + 8.

Consider the remainders of p1, p1 + 2, p1 + 6, p1 + 8 when divided by 5. If
p1 ≡ 2 (mod 5), then p1 + 8 is divisible by 5 and hence is not a prime. If
p1 ≡ 3 (mod 5), then p1 + 2 is divisible by 5. If p1 ≡ 4 (mod 5), then p1 + 6
is divisible by 5. Hence the only possibility is p1 ≡ 1 (mod 5).

Thus we see that p1 ≡ 1 (mod 2), p1 ≡ 2 (mod 3) and p1 ≡ 1 (mod 5). We
conclude that p1 ≡ 11 (mod 30).

Similarly q1 ≡ 11 (mod 30). It follows that 30 divides p1 − q1.

3. Define a sequence 〈f0(x), f1(x), f2(x), . . .〉 of functions by

f0(x) = 1, f1(x) = x,
(

fn(x)
)2 − 1 = fn+1(x)fn−1(x), for n ≥ 1.

Prove that each fn(x) is a polynomial with integer coefficients.

Solution: Observe that

f 2

n
(x)− fn−1(x)fn+1(x) = 1 = f 2

n−1(x)− fn−2(x)fn(x).

This gives

fn(x)
(

fn(x) + fn−2(x)
)

= fn−1

(

fn−1(x) + fn+1(x)
)

.

We write this as

fn−1(x) + fn+1(x)

fn(x)
=

fn−2(x) + fn(x)

fn−1(x)
.

Using induction, we get

fn−1(x) + fn+1(x)

fn(x)
=

f0(x) + f2(x)

f1(x)
.

Observe that

f2(x) =
f 2
1 (x)− 1

f0(x)
= x2 − 1.

Hence
fn−1(x) + fn+1(x)

fn(x)
=

1 + (x2 − 1)

x
= x.

Thus we obtain
fn+1(x) = xfn(x)− fn−1(x).



Since f0(x), f1(x) and f2(x) are polynomials with integer coefficients,
induction again shows that fn(x) is a polynomial with integer coeffi-
cients.

Note: We can get fn(x) explicitly:

fn(x) = xn −
(

n− 1

1

)

xn−2 +

(

n− 2

2

)

xn−4 −
(

n− 3

3

)

xn−6 + · · ·

4. Let ABC be a triangle. An interior point P of ABC is said to be good if
we can find exactly 27 rays emanating from P intersecting the sides of
the triangle ABC such that the triangle is divided by these rays into 27
smaller triangles of equal area. Determine the number of good points
for a given triangle ABC.

Solution: Let P be a good point. Let l, m, n be respetively the number
of parts the sides BC, CA, AB are divided by the rays starting from
P . Note that a ray must pass through each of the vertices the triangle
ABC; otherwise we get some quadrilaterals.

Let h1 be the distance of P from BC. Then h1 is the height for all the
triangles with their bases on BC. Equality of areas implies that all
these bases have equal length. If we denote this by x, we get lx = a.
Similarly, taking y and z as the lengths of the bases of triangles on CA
and AB respectively, we get my = b and nz = c. Let h2 and h3 be the
distances of P from CA and AB respectively. Then

h1x = h2y = h3z =
2∆

27
,

where ∆ denotes the area of the triangle ABC. These lead to

h1 =
2∆

27

l

a
, h1 =

2∆

27

m

b
, h1 =

2∆

27

n

c
.

But
2∆

a
= ha,

2∆

b
= hb,

2∆

c
= hc.

Thus we get
h1

ha

=
l

27
,

h2

hb

=
m

27
,

h3

hc

=
n

27
.

However, we also have

h1

ha

=
[PBC]

∆
,

h2

hb

=
[PCA]

∆
,

h3

hc

=
[PAB]

∆
.

Adding these three relations,

h1

ha

+
h2

hb

+
h3

hc

= 1.

Thus
l

27
+

m

27
+

n

27
=

h1

ha

+
h2

hb

+
h3

hc

= 1.



We conclude that l +m + n = 27. Thus every good point P determines
a partition (l, m, n) of 27 such that there are l, m, n equal segments
respectively on BC, CA, AB.

Conversely, take any partition (l, m, n) of 27. Divide BC, CA, AB re-
spectively in to l, m, n equal parts. Define

h1 =
2l∆

27a
, h2 =

2m∆

27b
.

Draw a line parallel to BC at a distance h1 from BC; draw another line
parallel to CA at a distance h2 from CA. Both lines are drawn such
that they intersect at a point P inside the triangle ABC. Then

[PBC] =
1

2
ah1 =

l∆

27
, [PCA] =

m∆

27
.

Hence

[PAB] =
n∆

27
.

This shows that the distance of P from AB is

h3 =
2n∆

27c
.

Therefore each traingle with base on CA has area
∆

27
. We conclude that

all the triangles which partitions ABC have equal areas. Hence P is a
good point.

Thus the number of good points is equal to the number of positive
integral solutions of the equation l +m+ n = 27. This is equal to

(

26

2

)

= 325.

5. Let ABC be an acute-angled triangle, and let D, E, F be points on BC,
CA, AB respectively such that AD is the median, BE is the internal
angle bisector and CF is the altitude. Suppose ∠FDE = ∠C, ∠DEF =
∠A and ∠EFD = ∠B. Prove that ABC is equilateral.

Solution: Since ∆BFC is
right-angled at F , we have
FD = BD = CD = a/2. Hence
∠BFD = ∠B. Since ∠EFD =
∠B, we have ∠AFE = π − 2∠B.
Since ∠DEF = ∠A, we also get
∠CED = π−2∠B. Applying sine
rule in ∆DEF , we have

DF

sinA
=

FE

sinC
=

DE

sinB
.



Thus we get FE = c/2 and DE = b/2. Sine rule in ∆CED gives

DE

sinC
=

CD

sin(π − 2B)
.

Thus (b/ sinC) = (a/2 sinB cosB). Solving for cosB, we have

cosB =
a sin c

2b sinB
=

ac

2b2
.

Similarly, sine rule in ∆AEF gives

EF

sinA
=

AE

sin(π − 2B)
.

This gives (since AE = bc/(a+ c)), as earlier,

cosB =
a

a + c
.

Comparing the two values of cosB, we get 2b2 = c(a+ c). We also have

c2 + a2 − b2 = 2ca cosB =
2a2c

a+ c
.

Thus

4a2c = (a+ c)(2c2 + 2a2 − 2b2) = (a + c)(2c2 + 2a2 − c(a+ c)).

This reduces to 2a3−3a2c+ c3 = 0. Thus (a− c)2(2a+ c) = 0. We conclude
that a = c. Finally

2b2 = c(a + c) = 2c2.

We thus get b = c and hence a = c = b. This shows that ∆ABC is
equilateral.

6. Let f : Z → Z be a function satisfying f(0) 6= 0, f(1) = 0 and

(i) f(xy) + f(x)f(y) = f(x) + f(y);

(ii)
(

f(x− y)− f(0)
)

f(x)f(y) = 0,

for all x, y ∈ Z, simultaneously.

(a) Find the set of all possible values of the function f .

(b) If f(10) 6= 0 and f(2) = 0, find the set of all integers n such that
f(n) 6= 0.

Solution: Setting y = 0 in the condition (ii), we get

(

f(x)− f(0)
)

f(x) = 0,

for all x (since f(0) 6= 0). Thus either f(x) = 0 or f(x) = f(0), for all x ∈ Z.
Now taking x = y = 0 in (i), we see that f(0) + f(0)2 = 2f(0). This shows



that f(0) = 0 or f(0) = 1. Since f(0) 6= 0, we must have f(0) = 1. We
conclude that

either f(x) = 0 or f(x) = 1 for each x ∈ Z.

This shows that the set of all possible value of f(x) is {0, 1}. This
completes (a).

Let S =
{

n ∈ Z
∣

∣f(n) 6= 0
}

. Hence we must have S =
{

n ∈ Z
∣

∣f(n) = 1
}

by
(a). Since f(1) = 0, 1 is not in S. And f(0) = 1 implies that 0 ∈ S. Take
any x ∈ Z and y ∈ S. Using (ii), we get

f(xy) + f(x) = f(x) + 1.

This shows that xy ∈ S. If x ∈ Z and y ∈ Z are such that xy ∈ S, then
(ii) gives

1 + f(x)f(y) = f(x) + f(y).

Thus
(

f(x) − 1
)(

f(y) − 1
)

= 0. It follows that f(x) = 1 or f(y) = 1; i.e.,
either x ∈ S or y ∈ S. We also observe from (ii) that x ∈ S and y ∈ S
implies that f(x− y) = 1 so that x− y ∈ S. Thus S has the properties:

(A) x ∈ Z and y ∈ S implies xy ∈ S;

(B) x, y ∈ Z and xy ∈ S implies x ∈ S or y ∈ S;

(C) x, y ∈ S implies x− y ∈ S.

Now we know that f(10) 6= 0 and f(2) = 0. Hence f(10) = 1 and 10 ∈ S;
and 2 6∈ S. Writing 10 = 2× 5 and using (B), we conclude that 5 ∈ S and
f(5) = 1. Hence f(5k) = 1 for all k ∈ Z by (A).

Suppose f(5k + l) = 1 for some l, 1 ≤ l ≤ 4. Then 5k + l ∈ S. Choose
u ∈ Z such that lu ≡ 1 (mod 5). We have (5k + l)u ∈ S by (A). Moreover,
lu = 1 + 5m for some m ∈ Z and

(5k + l)u = 5ku+ lu = 5ku+ 5m+ 1 = 5(ku+m) + 1.

This shows that 5(ku+m)+1 ∈ S. However, we know that 5(ku+m) ∈ S.
By (C), 1 ∈ S which is a contradiction. We conclude that 5k + l 6∈ S for
any l, 1 ≤ l ≤ 4. Thus

S =
{

5k
∣

∣k ∈ Z
}

.
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